Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678201

ABSTRACT

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Subject(s)
Genes, Recessive , Genome-Wide Association Study , Animals , Cattle , Polymorphism, Single Nucleotide , Glycogen Phosphorylase, Muscle Form/genetics , Glycogen Phosphorylase, Muscle Form/deficiency , Male , Female , Cattle Diseases/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Whole Genome Sequencing , Pedigree
2.
J Vet Diagn Invest ; : 10406387241239918, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516801

ABSTRACT

Thirteen American Hereford cattle were reported blind with presumed onset when ~12-mo-old. All blind cattle shared a common ancestor through both the maternal and paternal pedigrees, suggesting a recessive genetic origin. Given the pedigree relationships and novel phenotype, we characterized the ophthalmo-pathologic changes associated with blindness and identified the responsible gene variant. Ophthalmologic examinations of 5 blind cattle revealed retinal degeneration. Histologically, 2 blind cattle had loss of the retinal photoreceptor layer. Whole-genome sequencing (WGS) of 7 blind cattle and 9 unaffected relatives revealed a 1-bp frameshift deletion in ceroid lipofuscinosis neuronal 3 (CLN3; chr25 g.26043843del) for which the blind cattle were homozygous and their parents heterozygous. The identified variant in exon 16 of 17 is predicted to truncate the encoded protein (p. Pro369Argfs*8) battenin, which is involved in lysosomal function necessary for photoreceptor layer maintenance. Of 462 cattle genotyped, only blind cattle were homozygous for the deletion. A query of WGS data of > 5,800 animals further revealed that the variant was only observed in related Hereford cattle. Mutations in CLN3 are associated with human juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which results in early-onset retinal degeneration and lesions similar to those observed in our cases. Our data support the frameshift variant of CLN3 as causative of blindness in these Hereford cattle, and provide additional evidence of the role of this gene in retinal lesions, possibly as a model for human non-syndromic JNCL.

3.
Cell ; 186(16): 3333-3349.e27, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37490916

ABSTRACT

The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such "multipronged" T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies.


Subject(s)
Antigens, Neoplasm , Neoplasms , Proteomics , Receptors, Antigen, T-Cell , Antigens, Neoplasm/metabolism , Epitopes , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism
4.
Cell ; 185(16): 2936-2951.e19, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931021

ABSTRACT

We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HLA-A Antigens , Histocompatibility Antigens Class I , Humans
5.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35908785

ABSTRACT

Beta-adrenergic agonists (ß-AAs) are widely used supplements in beef and pork production to improve feed efficiency and increase lean muscle mass, yet little is known about the molecular mechanism by which ß-AAs achieve this outcome. Our objective was to identify the influence of ractopamine HCl and zilpaterol HCl on mitochondrial respiratory activity in muscle satellite cells isolated from crossbred beef steers (N = 5), crossbred barrows (N = 2), Yorkshire-cross gilts (N = 3), and commercial weather lambs (N = 5). Real-time measurements of oxygen consumption rates (OCRs) were recorded using extracellular flux analyses with a Seahorse XFe24 analyzer. After basal OCR measurements were recorded, zilpaterol HCl, ractopamine HCl, or no ß-AA was injected into the assay plate in three technical replicates for each cell isolate. Then, oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, and rotenone were injected into the assay plate sequentially, each inducing a different cellular state. This allowed for the measurement of OCR at these states and for the calculation of the following measures of mitochondrial function: basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, adenosine triphosphate (ATP)-linked respiration, and spare respiratory capacity. Incubation of bovine cells with either zilpaterol HCl or ractopamine HCl increased maximal respiration (P = 0.046) and spare respiratory capacity (P = 0.035) compared with non-supplemented counterparts. No difference (P > 0.05) was observed between zilpaterol HCl and ractopamine HCl for maximal respiration and spare respiratory capacity in bovine cell isolates. No measures of mitochondrial function (basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, ATP-linked respiration, and spare respiratory capacity) were altered by ß-AA treatment in ovine or porcine cells. These findings indicate that ß-AAs in cattle may improve the efficiency of oxidative metabolism in muscle satellite cells by modifying mitochondrial respiratory activity. The lack of response by ovine and porcine cells to ß-AA incubation also demonstrates differing physiological responses to ß-AA across species, which helps to explain the variation in its effectiveness as a growth supplement.


Beta-adrenergic agonists (ß-AAs) are supplemented to pigs and cattle to improve growth performance, carcass weight, and loin muscle area. Little is known about the mechanism taking place within individual cells by which ß-AAs achieve this outcome. Previous work reported that ß-AA supplementation improves the efficiency in which cells use glucose as an energy source and alters the expression of genes related to mitochondrial function, a key component of cellular energy production. To further our understanding of the impact of ß-AA supplementation on these cellular functions, our objective was to identify the influence of two ß-AAs used in livestock production, ractopamine HCl and zilpaterol HCl, on the mitochondrial respiratory activity of cells collected from the loin muscle and grown in culture. We isolated cells from cattle, pig, and sheep muscle and measured the oxygen consumption of the cells after treatment with ractopamine HCl, zilpaterol HCl, or with no supplement. We found that both ractopamine HCl and zilpaterol HCl enhance the efficiency of cellular energy production during a state of cellular stress in bovine muscle cells. There was no appreciable effect of the supplement on the energy production of pig or sheep cells. These data indicate that ß-AA supplementation in cattle may increase the muscle cell energy production capacity compared with non-supplemented cells. This study also demonstrates that the efficiency of cell energy production is one plausible mechanism underlying species differences in the response to ß-AA supplementation.


Subject(s)
Oxidative Phosphorylation , Protons , Adenosine Triphosphate , Adrenergic beta-Agonists/pharmacology , Animals , Cattle , Female , Myoblasts , Phenethylamines/pharmacology , Sheep , Sheep, Domestic , Swine
6.
J Anim Sci ; 100(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35079800

ABSTRACT

Heat stress (HS) triggers oxidative stress, systemic inflammation, and disrupts growth efficiency of livestock. ß-adrenergic agonists supplemented to ruminant livestock improve growth performance, increase skeletal muscle mass, and decrease carcass fat. The objective of this study was to understand the independent and interacting effects of HS and zilpaterol hydrochloride (ZH) supplementation on the transcriptome of subcutaneous white adipose tissue and the longissimus dorsi muscle in steers. Twenty-four Red Angus-based steers were assigned to thermoneutral (TN; Temperature Humidity Index [THI] = 68) or HS (THI = 73-85) conditions and were not supplemented or supplemented with ZH (8.33 mg/kg/d) for 21 d in a 2 × 2 factorial. Steers in the TN condition were pair-fed to the average daily feed intake of HS steers. RNA was isolated from adipose tissue and skeletal muscle samples collected via biopsy on 3, 10, and 21 d and sequenced using 3' Tag-Seq to an achieved average depth of 3.6 million reads/sample. Transcripts, mapped to ARS-UCD1.2, were quantified. Differential expression (DE) analyses were performed in DESeq2 with a significance threshold for false discovery rate of 0.05. In adipose, 4 loci (MISP3, APOL6, SLC25A4, and S100A12) were DE due to ZH on day 3, and 2 (RRAD, ALB) were DE due to the interaction of HS and ZH on day 10 (Padj < 0.05). In muscle, 40 loci (including TENM4 and OAZ1) were DE due to ZH on day 10, and 6 loci (HIF1A, LOC101903734, PDZD9, HNRNPU, MTUS1, and TMCO6) were DE due to environment on day 21 (Padj < 0.05). To explore biological pathways altered by environment, supplement, and their interaction, loci with DE (Praw < 0.05) were evaluated in Ingenuity Pathway Analysis. In adipose, 509 pathways were predicted to be altered (P < 0.01): 202 due to HS, 126 due to ZH, and 181 due to the interaction; these included inflammatory pathways predicted to be upregulated due to HS but downregulated due to the interaction of HS and ZH. In muscle, 113 pathways were predicted to be altered (P < 0.01): 23 due to HS, 66 due to ZH, and 24 due to the interaction of HS and ZH. Loci and pathway data in muscle suggest HS induced oxidative stress and that the stress response was moderated by ZH. Metabolic pathways were predicted to be altered due to HS, ZH, and their interaction in both tissues. These data provide evidence that HS and ZH interact to alter expression of genes in metabolic and immune function pathways and that ZH moderates some adverse effects of HS.


Heat stress (HS) negatively impacts livestock health and carcass quality. Supplementation of livestock with ß-adrenergic agonists (ß-AA) increases muscle mass and decreases fat deposition. The purpose of this study was to understand how HS and zilpaterol hydrochloride (ZH), a ß-AA, alter gene expression in muscle and in adipose of cattle. Twenty-four steers were assigned to thermoneutral (TN) or HS conditions and were not supplemented (NS) or supplemented with ZH for 21 d. RNA was isolated from muscle and adipose collected on days 3, 10, and 21 to identify changes in gene expression. Several individual loci were differentially expressed (DE) due to HS or ZH in both tissues while the interaction of HS and ZH altered expression in adipose. A less stringent definition of DE used to explore biological pathways predicted that both treatments alter metabolism. Pathway analyses also supported that HS increased inflammation in adipose, but that these inflammatory pathways were downregulated by ZH. HS also was predicted to induce oxidative stress in muscle although ZH moderated this response. This study provides information on how HS and ß-AA act independently and interact to alter physiology, lending insight useful for the development of management and mitigation strategies for stress.


Subject(s)
Animal Feed , Cattle Diseases , Adipose Tissue, White , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Gene Expression Profiling/veterinary , Heat-Shock Response , Inflammation/veterinary , Meat/analysis , Muscle, Skeletal/physiology , Oxidative Stress , Trimethylsilyl Compounds/pharmacology
7.
Front Genet ; 12: 650305, 2021.
Article in English | MEDLINE | ID: mdl-33763124

ABSTRACT

Following the successful creation of a biobank from two adult Thoroughbred mares, this study aimed to recapitulate sample collection in two adult Thoroughbred stallions as part of the Functional Annotation of the Animal Genome (FAANG) initiative. Both stallions underwent thorough physical, lameness, neurologic, and ophthalmic (including electroretinography) examinations prior to humane euthanasia. Epididymal sperm was recovered from both stallions immediately postmortem and cryopreserved. Aseptically collected full thickness skin biopsies were used to isolate, culture and cryopreserve dermal fibroblasts. Serum, plasma, cerebrospinal fluid, urine, and gastrointestinal content from various locations were collected and cryopreserved. Under guidance of a board-certified veterinary anatomic pathologist, 102 representative tissue samples were collected from both horses. Whole tissue samples were flash-frozen and prioritized tissues had nuclei isolated and cryopreserved. Spatially contemporaneous samples of each tissue were submitted for histologic examination. Antemortem and gross pathologic examination revealed mild abnormalities in both stallions. One stallion (ECA_UCD_AH3) had unilateral thoracic limb lameness and bilateral chorioretinal scars. The second stallion (ECA_UCD_AH4) had subtle symmetrical pelvic limb ataxia, symmetrical prostatomegally, and moderate gastrointestinal nematodiasis. DNA from each was whole-genome sequenced and genotyped using the GGP Equine 70K SNP array. The genomic resources and banked biological samples from these animals augments the existing resource available to the equine genomics community. Importantly we may now improve the resolution of tissue-specific gene regulation as affected by sex, as well as add sex-specific tissues and gametes.

9.
Genes (Basel) ; 11(11)2020 10 22.
Article in English | MEDLINE | ID: mdl-33105751

ABSTRACT

In spring 2020, six Hereford calves presented with congenital facial deformities attributed to a condition we termed mandibulofacial dysostosis (MD). Affected calves shared hallmark features of a variably shortened and/or asymmetric lower mandible and bilateral skin tags present 2-10 cm caudal to the commissure of the lips. Pedigree analysis revealed a single common ancestor shared by the sire and dam of each affected calf. Whole-genome sequencing (WGS) of 20 animals led to the discovery of a variant (Chr26 g. 14404993T>C) in Exon 3 of CYP26C1 associated with MD. This missense mutation (p.L188P), is located in an α helix of the protein, which the identified amino acid substitution is predicted to break. The implication of this mutation was further validated through genotyping 2 additional affected calves, 760 other Herefords, and by evaluation of available WGS data from over 2500 other individuals. Only the affected individuals were homozygous for the variant and all heterozygotes had at least one pedigree tie to the suspect founder. CYP26C1 plays a vital role in tissue-specific regulation of retinoic acid (RA) during embryonic development. Dysregulation of RA can result in teratogenesis by altering the endothelin-1 signaling pathway affecting the expression of Dlx genes, critical to mandibulofacial development. We postulate that this recessive missense mutation in CYP26C1 impacts the catalytic activity of the encoded enzyme, leading to excess RA resulting in the observed MD phenotype.


Subject(s)
Branchial Region/embryology , Cattle Diseases/genetics , Cytochrome P450 Family 26/genetics , Mandibulofacial Dysostosis/genetics , Animals , Branchial Region/abnormalities , Cattle , Genome/genetics , Mutation, Missense/genetics , Pedigree , Tretinoin/metabolism , Whole Genome Sequencing
10.
Front Immunol ; 11: 296, 2020.
Article in English | MEDLINE | ID: mdl-32184781

ABSTRACT

The strong links between (Human Leukocyte Antigen) HLA, infection and autoimmunity combine to implicate T-cells as primary triggers of autoimmune disease (AD). T-cell crossreactivity between microbially-derived peptides and self-peptides has been shown to break tolerance and trigger AD in experimental animal models. Detailed examination of the potential for T-cell crossreactivity to trigger human AD will require means of predicting which peptides might be recognised by autoimmune T-cell receptors (TCRs). Recent developments in high throughput sequencing and bioinformatics mean that it is now possible to link individual TCRs to specific pathologies for the first time. Deconvolution of TCR function requires knowledge of TCR specificity. Positional Scanning Combinatorial Peptide Libraries (PS-CPLs) can be used to predict HLA-restriction and define antigenic peptides derived from self and pathogen proteins. In silico search of the known terrestrial proteome with a prediction algorithm that ranks potential antigens in order of recognition likelihood requires complex, large-scale computations over several days that are infeasible on a personal computer. We decreased the time required for peptide searching to under 30 min using multiple blocks on graphics processing units (GPUs). This time-efficient, cost-effective hardware accelerator was used to screen bacterial and fungal human pathogens for peptide sequences predicted to activate a T-cell clone, InsB4, that was isolated from a patient with type 1 diabetes and recognised the insulin B-derived epitope HLVEALYLV in the context of disease-risk allele HLA A*0201. InsB4 was shown to kill HLA A*0201+ human insulin producing ß-cells demonstrating that T-cells with this specificity might contribute to disease. The GPU-accelerated algorithm and multispecies pathogen proteomic databases were validated to discover pathogen-derived peptide sequences that acted as super-agonists for the InsB4 T-cell clone. Peptide-MHC tetramer binding and surface plasmon resonance were used to confirm that the InsB4 TCR bound to the highest-ranked peptide agonists derived from infectious bacteria and fungi. Adoption of GPU-accelerated prediction of T-cell agonists has the capacity to revolutionise our understanding of AD by identifying potential targets for autoimmune T-cells. This approach has further potential for dissecting T-cell responses to infectious disease and cancer.


Subject(s)
Epitopes, T-Lymphocyte/metabolism , Insulin/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Clone Cells , Combinatorial Chemistry Techniques , Computational Biology , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Insulin/immunology , Molecular Mimicry , Pathogen-Associated Molecular Pattern Molecules/immunology , Peptide Library , T-Cell Antigen Receptor Specificity
12.
Nat Immunol ; 21(2): 178-185, 2020 02.
Article in English | MEDLINE | ID: mdl-31959982

ABSTRACT

Human leukocyte antigen (HLA)-independent, T cell-mediated targeting of cancer cells would allow immune destruction of malignancies in all individuals. Here, we use genome-wide CRISPR-Cas9 screening to establish that a T cell receptor (TCR) recognized and killed most human cancer types via the monomorphic MHC class I-related protein, MR1, while remaining inert to noncancerous cells. Unlike mucosal-associated invariant T cells, recognition of target cells by the TCR was independent of bacterial loading. Furthermore, concentration-dependent addition of vitamin B-related metabolite ligands of MR1 reduced TCR recognition of cancer cells, suggesting that recognition occurred via sensing of the cancer metabolome. An MR1-restricted T cell clone mediated in vivo regression of leukemia and conferred enhanced survival of NSG mice. TCR transfer to T cells of patients enabled killing of autologous and nonautologous melanoma. These findings offer opportunities for HLA-independent, pan-cancer, pan-population immunotherapies.


Subject(s)
Cytotoxicity, Immunologic/immunology , Histocompatibility Antigens Class I/immunology , Minor Histocompatibility Antigens/immunology , Neoplasms/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology , Animals , CRISPR-Cas Systems , Genome-Wide Association Study , Humans , Immunotherapy/methods , Lymphocyte Activation/immunology , Mice
13.
Front Immunol ; 11: 604913, 2020.
Article in English | MEDLINE | ID: mdl-33603740

ABSTRACT

We have used the pig, a large natural host animal for influenza with many physiological similarities to humans, to characterize αß, γδ T cell and antibody (Ab) immune responses to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte Antigen) and compared them to commercial outbred animals. High level of nasal virus shedding continued up to days 4 to 5 post infection followed by a steep decline and clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5 to 6 post infection reaching a peak at 9 to 14 days. γδ T cells produced cytokines ex vivo at day 2 post infection, while virus reactive IFNγ producing γδ T cells were detected from day 7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear differences in cytokine production between these tissues. BAL contained the most highly activated CD8, CD4, and γδ T cells producing large amounts of cytokines, which likely contribute to elimination of virus. The weak response in blood did not reflect the powerful local lung immune responses. The immune response in the Babraham pig following H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to utilize these two swine models together will provide unparalleled power to analyze immune responses to influenza.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/virology , T-Lymphocyte Subsets/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cytokines/metabolism , Disease Models, Animal , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Host-Pathogen Interactions , Inbreeding , Influenza A Virus, H1N1 Subtype/pathogenicity , Kinetics , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Species Specificity , Sus scrofa , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Viral Load , Virus Shedding
14.
Eur J Immunol ; 49(7): 1052-1066, 2019 07.
Article in English | MEDLINE | ID: mdl-31091334

ABSTRACT

The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.


Subject(s)
Immunodominant Epitopes/metabolism , Immunotherapy, Adoptive/methods , MART-1 Antigen/metabolism , Melanoma/immunology , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Amino Acids , Antigen Presentation , Binding Sites , Cells, Cultured , Clone Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Lymphocyte Activation , MART-1 Antigen/chemistry , Melanoma/therapy , Peptides/chemistry , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/transplantation
15.
Front Immunol ; 10: 319, 2019.
Article in English | MEDLINE | ID: mdl-30930889

ABSTRACT

Recent immunotherapeutic approaches using adoptive cell therapy, or checkpoint blockade, have demonstrated the powerful anti-cancer potential of CD8 cytotoxic T-lymphocytes (CTL). While these approaches have shown great promise, they are only effective in some patients with some cancers. The potential power, and relative ease, of therapeutic vaccination against tumour associated antigens (TAA) present in different cancers has been a long sought-after approach for harnessing the discriminating sensitivity of CTL to treat cancer and has seen recent renewed interest following cancer vaccination successes using unique tumour neoantigens. Unfortunately, results with TAA-targeted "universal" cancer vaccines (UCV) have been largely disappointing. Infectious disease models have demonstrated that T-cell clonotypes that recognise the same antigen should not be viewed as being equally effective. Extrapolation of this notion to UCV would suggest that the quality of response in terms of the T-cell receptor (TCR) clonotypes induced might be more important than the quantity of the response. Unfortunately, there is little opportunity to assess the effectiveness of individual T-cell clonotypes in vivo. Here, we identified effective, persistent T-cell clonotypes in an HLA A2+ patient following successful tumour infiltrating lymphocyte (TIL) therapy. One such T-cell clone was used to generate super-agonist altered peptide ligands (APLs). Further refinement produced an APL that was capable of inducing T-cells in greater magnitude, and with improved effectiveness, from the blood of all 14 healthy donors tested. Importantly, this APL also induced T-cells from melanoma patient blood that exhibited superior recognition of the patient's own tumour compared to those induced by the natural antigen sequence. These results suggest that use of APL to skew the clonotypic quality of T-cells induced by cancer vaccination could provide a promising avenue in the hunt for the UCV "magic bullet."


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma/immunology , Peptides/immunology , T-Lymphocytes, Cytotoxic/immunology , Cancer Vaccines/immunology , Cell Line, Tumor , HLA-A2 Antigen/immunology , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology
16.
BMC Genet ; 19(1): 56, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30092776

ABSTRACT

BACKGROUND: SNPs are informative to estimate genomic breed composition (GBC) of individual animals, but selected SNPs for this purpose were not made available in the commercial bovine SNP chips prior to the present study. The primary objective of the present study was to select five common SNP panels for estimating GBC of individual animals initially involving 10 cattle breeds (two dairy breeds and eight beef breeds). The performance of the five common SNP panels was evaluated based on admixture model and linear regression model, respectively. Finally, the downstream implication of GBC on genomic prediction accuracies was investigated and discussed in a Santa Gertrudis cattle population. RESULTS: There were 15,708 common SNPs across five currently-available commercial bovine SNP chips. From this set, four subsets (1,000, 3,000, 5,000, and 10,000 SNPs) were selected by maximizing average Euclidean distance (AED) of SNP allelic frequencies among the ten cattle breeds. For 198 animals presented as Akaushi, estimated GBC of the Akaushi breed (GBCA) based on the admixture model agreed very well among the five SNP panels, identifying 166 animals with GBCA = 1. Using the same SNP panels, the linear regression approach reported fewer animals with GBCA = 1. Nevertheless, estimated GBCA using both models were highly correlated (r = 0.953 to 0.992). In the genomic prediction of a Santa Gertrudis population (and crosses), the results showed that the predictability of molecular breeding values using SNP effects obtained from 1,225 animals with no less than 0.90 GBC of Santa Gertrudis (GBCSG) decreased on crossbred animals with lower GBCSG. CONCLUSIONS: Of the two statistical models used to compute GBC, the admixture model gave more consistent results among the five selected SNP panels than the linear regression model. The availability of these common SNP panels facilitates identification and estimation of breed compositions using currently-available bovine SNP chips. In view of utility, the 1 K panel is the most cost effective and it is convenient to be included as add-on content in future development of bovine SNP chips, whereas the 10 K and 16 K SNP panels can be more resourceful if used independently for imputation to intermediate or high-density genotypes.


Subject(s)
Models, Genetic , Molecular Typing/methods , Polymorphism, Single Nucleotide , Animals , Cattle , Gene Frequency , Genetics, Population , Genome-Wide Association Study
17.
Front Immunol ; 9: 1378, 2018.
Article in English | MEDLINE | ID: mdl-30008714

ABSTRACT

Peptide-MHC (pMHC) multimers have become the "gold standard" for the detection and isolation of antigen-specific T-cells but recent evidence shows that normal use of these reagents can miss fully functional T-cells that bear T-cell receptors (TCRs) with low affinity for cognate antigen. This issue is particularly pronounced for anticancer and autoimmune T-cells as self-reactive T-cell populations are enriched for low-affinity TCRs due to the removal of cells with higher affinity receptors by immune tolerance mechanisms. Here, we stained a wide variety of self-reactive human T-cells using regular pMHC staining and an optimized technique that included: (i) protein kinase inhibitor (PKI), to prevent TCR triggering and internalization, and (ii) anti-fluorochrome antibody, to reduce reagent dissociation during washing steps. Lymphocytes derived from the peripheral blood of type 1 diabetes patients were stained with pMHC multimers made with epitopes from preproinsulin (PPI), insulin-ß chain, glutamic acid decarboxylase 65 (GAD65), or glucose-6-phospate catalytic subunit-related protein (IGRP) presented by disease-risk allelles HLA A*02:01 or HLA*24:02. Samples from ankylosing spondylitis patients were stained with a multimerized epitope from vasoactive intestinal polypeptide receptor 1 (VIPR1) presented by HLA B*27:05. Optimized procedures stained an average of 40.5-fold (p = 0.01, range between 1.4 and 198) more cells than could be detected without the inclusion of PKI and cross-linking anti-fluorochrome antibody. Higher order pMHC dextramers recovered more cells than pMHC tetramers in parallel assays, and standard staining protocols with pMHC tetramers routinely recovered less cells than functional assays. HLA A*02:01-restricted PPI-specific and HLA B*27:05-restricted VIPR1-specific T-cell clones generated using the optimized procedure could not be stained by standard pMHC tetramer staining. However, these clones responded well to exogenously supplied peptide and endogenously processed and presented epitopes. We also showed that anti-fluorochrome antibody-conjugated magnetic beads enhanced staining of self-reactive T-cells that could not be stained using standard protocols, thus enabling rapid ex vivo isolation of autoimmune T-cells. We, therefore, conclude that regular pMHC tetramer staining is generally unsuitable for recovering self-reactive T-cells from clinical samples and recommend the use of the optimized protocols described herein.

18.
PLoS Pathog ; 14(5): e1007017, 2018 05.
Article in English | MEDLINE | ID: mdl-29772011

ABSTRACT

There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Respiratory System/immunology , Aerosols , Amino Acid Sequence , Animals , Antigens, Viral/chemistry , Epitopes/chemistry , Epitopes/genetics , Female , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Host-Pathogen Interactions/immunology , Humans , Inbreeding , Influenza A virus/pathogenicity , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/transmission , Male , Models, Animal , Models, Molecular , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Sus scrofa/genetics , Sus scrofa/immunology , Swine , Swine Diseases/immunology , Swine Diseases/prevention & control , Vaccination/methods , Vaccination/veterinary
19.
Front Immunol ; 9: 674, 2018.
Article in English | MEDLINE | ID: mdl-29696015

ABSTRACT

T-cell immunity is controlled by T cell receptor (TCR) binding to peptide major histocompatibility complexes (pMHCs). The nature of the interaction between these two proteins has been the subject of many investigations because of its central role in immunity against pathogens, cancer, in autoimmunity, and during organ transplant rejection. Crystal structures comparing unbound and pMHC-bound TCRs have revealed flexibility at the interaction interface, particularly from the perspective of the TCR. However, crystal structures represent only a snapshot of protein conformation that could be influenced through biologically irrelevant crystal lattice contacts and other factors. Here, we solved the structures of three unbound TCRs from multiple crystals. Superposition of identical TCR structures from different crystals revealed some conformation differences of up to 5 Å in individual complementarity determining region (CDR) loops that are similar to those that have previously been attributed to antigen engagement. We then used a combination of rigidity analysis and simulations of protein motion to reveal the theoretical potential of TCR CDR loop flexibility in unbound state. These simulations of protein motion support the notion that crystal structures may only offer an artifactual indication of TCR flexibility, influenced by crystallization conditions and crystal packing that is inconsistent with the theoretical potential of intrinsic TCR motions.


Subject(s)
Complementarity Determining Regions , Receptors, Antigen, T-Cell/chemistry , Computer Simulation , Crystallization , Crystallography, X-Ray , Protein Conformation
20.
Eur J Immunol ; 48(2): 258-272, 2018 02.
Article in English | MEDLINE | ID: mdl-28975614

ABSTRACT

The repertoire of human αß T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8+ T cell response to the highly effective YF-17D vaccine. We discover that these A2/LLW-specific CD8+ T cells are highly biased for the TCR α chain TRAV12-2. This bias is already present in A2/LLW-specific naïve T cells before vaccination with YF-17D. Using CD8+ T cell clones, we show that TRAV12-2 does not confer a functional advantage on a per cell basis. Molecular modeling indicated that the germline-encoded complementarity determining region (CDR) 1α loop of TRAV12-2 critically contributes to A2/LLW binding, in contrast to the conventional dominant dependence on somatically rearranged CDR3 loops. This germline component of antigen recognition may explain the unusually high precursor frequency, prevalence and immunodominance of T-cell responses specific for the A2/LLW epitope.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Complementarity Determining Regions/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Viral Vaccines/immunology , Yellow Fever/immunology , Yellow fever virus/physiology , Adaptive Immunity/genetics , Cell Line , Clonal Selection, Antigen-Mediated , Clone Cells , Cytotoxicity, Immunologic , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Humans , Immunodominant Epitopes/metabolism , Lymphocyte Activation , T-Cell Antigen Receptor Specificity , Viral Proteins/metabolism , Yellow Fever/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...